

ANALGESICS

Drugs that **relives pain** without affecting consciousness.

Classification:

Analgesics	
Opiods	NSAIDS
• Natural opiods	• Non-selective CoX inhibtors
• Semisynthetic opiods	• Selective CoX -2inhibitors
• Diacetyl morphine and phenol codiene	• Preferential CoX inhibitor
• Synthetic opiods	• Analgesic,Antipyretic

Pharmacological Actions:

- I. Analgesic action :
 - Relives Musculo-skeleton pain, Dysmenorrhoea and pain associated with inflammation or tissue damage.
 - These drugs relive pain without causing Sedation, Drug dependence.
 - Aspirin deals with pain after inflammation i.e., both dental ad rheumatic pain.
- II. Anti-inflammatory action:
 - As it inhibits prostaglandin synthesis by inhibiting CoX enzyme synthesis.
 - It also modulates increase in cell functions, stabilises lysosomal membrane and inhibition of chemo taxis.
 - These days it provides symptomatic relief only.
- III. Anti-pyretic action:
 - It acts by inhibiting the Prostaglandin synthesis which in turn inhibits the formation of pyrogenes in hypothalamus.

• As hypothalamus is the thermal regulatory centre of the body, any variation in the thermostat, decreases the temperature of the body by causing cutaneous vasodilatation and sweating.

IV. Anti-platelet action:

• CoX enzyme formed irreversibly in platelet decreases platelet aggregation.

V. Acid-base and electrolyte balance:

- Aspirin in low dosage causes respiratory alkalosis which is compensated by excretion of alkaline urine.
- VI. Action on Gastrointestinal tract (GIT):
 - Aspirin Enters in unionised state → Gets ionised in GIT → Cannot diffuse back → damages gastric mucosa.
 - Aspirin → inhibits CoX inhibitor → Synthesis of PGE1 and PGE2 → gastric mucosal damage.

VII. Action on Respiration:

• Causes respiratory alkalosis.

VIII. Action on Cerebra-Vascular System (CVS):

• Aspirin at large doses → increases the Oxygen consumption → increases the Cardiac output.

IX. Action on Urate excretion:

- Decreases the uric acid secretion in distal convoluted tubule → Increasing the plasma uric acid level.
- Avoided in gout patients.

Therapeutic uses:

- 📥 As Analgesic.
- ∔ As Antipyretic
- **4** In Osteoarthritis and Rheumatoid arthritis.
- 4 In Myocardial Infarction and Stroke.
- **U**elays labour during pregnancy.
- **4** Used to treat pregnant hypertensive patients.

Side effects:

Causes Nausea, Vomiting, Hypersensitivity Reactions, Epigastric Distress, Peptic Ulcers.

4 Salicylism :- (**HIVE-D**)

- i. Hyperventilation
- ii. Impairment(hearing vision)
- iii. Vertigo
- iV. Electrolyte imbalance
- V. Dizziness
- **4** Reye's syndrome: Hepatic Encephalopathy.

NON-STEROIDAL ANTI-INFLAMATORY DRUGS (NSAID'S)

Note: Aspirin causes irreversible inhibition of CoX enzyme whereas other NSAIS'S cause reversible inhibition of CoX enzyme.

Contraindication of Aspirin:

- **W** Should not be used to treat Hypertensive patients, Epigastric distress, Peptic ulcer.
- **W** Not to be used in children having Reye's Syndrome.
- ∔ In Pregnant women.
- ∔ In Hepatic necrosis.
- Causes premature closure of ductus arteriosus.

Note: Paracetamol does not affect uric acid levels in our body. So, it is given in patients having Gout.